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1. Introduction

Miscible displacement is a process that occurs when one fluid
mixes with and displaces another fluid. The complex pore
geometry of soils makes the mathematical conceptualization
of solute transport phenomenon at the microscopic or at an
individual pore level difficult (JURY and FLUHLER, 1992).
Hence most mathematical models have been developed fora
macroscopic description of solute transport. The convective-
dispersive transport equation remains the foundation upon
which several analysis of solute transport in porous media

have been based. At the same time questions have also been
raised on the suitability of this equation to porous media
exhibiting large variations in pore water velocities due to the
presence of continuous macropores or by field scale variabil-
ity of soil hydrological properties (VAN GENUCHTEN and
WIERENGA, 1976). Under certain limiting conditions (i. e.,
for low apparent dispersivities) all solutions of the classical
convection dispersion equation yield symmetrical concentra-
tion distributions in time and space. However several exper-
iments conducted with aggregated or fractured porous media
have yielded asymmetrical spatial and temporal concentra-

Zusammenfassung

Die mathematische Formulierung von Stofftransportprozessen auf mikroskopischer Ebene, d. h. innerhalb einer Pore, ist
wegen der komplexen Porengeometrie von Béden duflerst schwierig. Deswegen werden die meisten Modelle auf makro-
skopischer Ebene unter Einfiihrung einer mittleren Porenwassergeschwindigkeit fiir konvektive Strdmung und eines Dif-
fusions-Dispersionskoeffizienten entwickelt. Die Unterscheidung der Dispersion eines gelésten Stoffes innerhalb einer
Kapillare konstanten Durchmessers durch molekulare Diffusion von der Dispersion durch Geschwindigkeitsvariationen
wurde erstmals von TAYLOR (1953) vollzogen. SCHEIDEGGER (1954) u. a. verwendeten eine stochastische ,random
walk“Methode, um den Transport im gesittigten homogenen, isotropen porsen Medium zu beschreiben. Die Kapillar-
modelle konnten durch das Konzept des reprisentativen Elementarvolumens physikalisch realistischer erklirt werden.
Riral et al. (1956) und EINSTEIN (1937) entwickelten unter der Annahme, dafd Fliissigkeit ein kontinuierliches Medium
ist und jeder Punkt einer Bahnlinie zugeordnet werden kann, ein stochastisches Modell, welches den Transport sowohl
in einer Phase mit konvektiver Bewegung als auch in einer Phase im Ruhezustand beschreibt. Die klassische Konvekd-
ons-Dispersionsgleichung wurde von LAPIDUS und AMUNDSON (1952) vorgeschlagen, welche spiter mit einigen kom-
plizierteren Gleichgewichts- und Nichegleichgewichtsprozessen erweitert wurde (INIELSEN et al., 1986; VAN GENUCHTEN
and WIERENGA, 1976; SELIM et al., 1976; CAMERON and KLUTE; 1977, KRUPP et al,, 1972 etc.). Im vorliegenden
Artikel sind einige mathematische Gleichgewichts- sowie Nichtgleichgewichtsmodelle zusammen mit den analytischen
Lésungen bei verschiedenen Anfangs- und Randbedingungen sowohl fiir kontinuierliche als auch ,pulse type®
Tracerapplikationen beschrieben. Ebenfalls aufgelistet sind dimensionslose Parameter. Die ,two site®, ,one site®, ,two
region” und Anionenausschluff-Modelle wurden unter Beriicksichtigung der Nichtgleichgewichtsprozesse in einer
dimensionslosen Gleichung zusammengefaft. Weiters sind einige Softwareprodukte fiir ein-, zwei- und dreidimensio-
nalen Stofftransport angefiihrt. Verschiedene Adsorptionstheorien, die in diesen Modellen implementiert sind, werden
ebenfalls erklirt. Zuletzt wird eine iterative Lésung prisentiert, die zur Verifikation der in diversen Modellen inkludier-
ten Adsorptionsisothermen dienen kann, wenn der source code nicht zur Verfiigung steht.

Schlagworte: Stofftransport, Durchbruchskurven, pordses Medium, Porenwassergeschwindigkeit, Gleichgewichts-,
Nichtgleichgewichtsprozesse, Adsorption.
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Summary

Mathematical conceptualization of the solute transport phenomenon at the microscopic level i. e. at an individual
pore, is difficult because of the complex pore geometry of soils. Hence most models are developed at macroscopic level
using an average pore water velocity for convective flow and a diffusion-dispersion coefficient. The insights into sep-
arate dispersion of a solute within a capillary of constant diameter caused by molecular diffusion from that by veloc-
ity distribution was first provided by TAYLOR (1953). Using statistical concepts, SCHEIDEGGER (1954) and others have
assumed a simple random walk stochastic process to describe transport in a fluid saturated homogeneous, isotropic
porous medium. Using the representative elementary volume concept, the random capillary models were made phys-
ically more realistic. Assuming fluid is a continuous medium and each point has a flow path RiFat et al. (1956) and
EINSTEIN (1937) developed a stochastic model which accounts for displacement for motion and rest phases. The clas-
sical convective dispersion equation was proposed by LAPIDUS and AMUNDSON (1952) which was later extended to
include several complicated equilibrium and nonequilibrium processes (NIELSEN et al., 1986; VAN GENUCHTEN and
WIERENGA, 1976; SELIM et al., 1976; CAMERON and KLUTE; 1977, KRUPP et al., 1972 etc.). In this paper several equi-
librium and nonequilibrium mathematical models are described along with their analytical solutions for various ini-
tial and boundary conditions for both continuous and pulse type tracer application. The nondimensional parameters
are also given in this paper. The nonequilibrium two site, one site, two region and anion exclusion models have also
been combined into one nondimensional equation taking into account all the nonequilibrium processes. The paper
further describes some of the commercially available software describing solute transport. The software described in
the paper include one, two and three dimensional solute transport through porous media using either analytical or
numerical solution of the problem. The various adsorption isotherms which could be employed in these models are
also included in the paper. At the end an iterative solution is presented which is helpful to verify some of the models
in case source code is not available.

Key Words: Miscible displacement, breakthrough curves, porous media, pore water velocity, equilibrium, non-
equilibrium, adsorption.

tion distributions with first moments significantly different
compared with those anticipated for symmetrical distribu-
tions. A rapid breakthrough in laboratory soil columns is
observed with such media, apparently because a large portion
of pore space is by passed, which results in the discrepancy
between effluent concentration and volume averaged resi-
dent pore fluid concentration in the vicinity of exit bound-
ary (PARKER and VAN GENUCHTEN, 1984).

As solute transport in soil and groundwater systems is gov-
erned by a large number of complicated and often interac-
tive physical, chemical, and microbiological processes sev-
eral transport models have been developed which consider
simultaneous effects of diffusion, dispersion, convection,
sorption, production and decay (JURY et al., 1991). Misci-
ble transport in the soil system does not always remain in
equilibrium, the presence of different types of sorption sites
or flow regions results in nonequilibrium. The nonequilib-
rium models are grouped into physical nonequilibrium
models which presume that nonequilibrium results from a
heterogeneous flow regime and chemical nonequilibrium
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models which presume that it is due to chemical-kinetic
processes. Physical nonequilibrium is often modeled by a
two-region (dual-porosity) type formation which partitions
the medium into mobile and immobile liquid regions (VAN
GENUCHTEN and WIERENGA, 1976). The solute exchange
between the two regions is considered to be a first order
mass transfer process. In this case transfer between the two
liquid regions presumably a diffusion process is proportion-
al to the concentration gradient between mobile and immo-
bile regions. Chemical nonequilibrium models include the
one site and two site sorption models which consider sorp-
tion on some sites to be an instantaneous equilibrium
process, while sorption on the remaining sites is considered
to be governed by first order kinetics (SELIM et al., 1976;
CAMERON and KLUTE, 1977). Transport in soils with bi-
model and/or dual porosity which describes the preferential
flow in this pore size distribution was described by GERKE
and VAN GENUCHTEN (1993).

Currently numerous analytical solutions for one dimen-
sional equilibrium and nonequilibrium transport are exist-
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ing. Most of them are for unique initial and boundary con-
ditions. A comprehensive set of analytical solutions for the
one dimensional convective dispersive solute transport
equation is presented by VAN GENUCHTEN and ALVES
(1982). Analytical solutions for one dimensional nonequi-
librium transport were first derived by LINDSTROM and
NARASIMHAN (1973) and LINDSTROM and STONE (1974)
for one site formation without considering first order degra-
dation and zero order production. LINDSTROM (1976) later
extended these solutions to first order decay for pulse type
of input assuming an initially solute free profile. VAN
GENUCHTEN and WIERENGA (1976) derived the analytical
solutions for two region nonequilibrium transport for pulse
type of input. DE SMEDT and WIERENGA (1979) later gen-
eralized these solutions. Several other analytical solutions
were derived considering two region or two site formations
with and without the consideration for first order decay and
zero order production terms (VAN GENUCHTEN et al., 1974;
SELIM et al., 1976; CAMERON and KLUTE, 1977; TORIDE et
al., 1993; etc.). In this paper several analytical and numeri-
cal mathematical concepts and software for describing
solute transport through porous media are compiled to pro-
vide the reader with a comprehensive overview of modelling
approaches. Dimensional and nondimensional parameters
of these solute transport models along with several bound-
ary and initially conditions are also included. Various
adsorption isotherms which could be incorporated in these
models are described as well. A simple zero-dimensional
approach to explain an iterative solution strategy or to verify
some of the presented models when the source code is not
available is also included in this paper.

2. Dimensional Deterministic Solute Trans-
port Models

2.1 Equilibrium Transport Models

TAYLOR (1953) presented a model for solute movement
through a single capillary tube of constant radius a, using
the parabolic formula for laminar flow, when the invading
fluid moves at constant average velocity; v,

2

v=2v(1-=) (1)
a

In the above equation v is the velocity at the radial distance
1 from the center of the capillary tube and the velocity at the

axis is 2v,. Following equation combines dispersion due to
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velocity distribution and to molecular diffusion when dif-
fusion coefficient D is assumed constant
8’Cc 18C &°C, &C r
Sl A=) A~ Y P
o e a2l

oC
D( ™ 2
where C is the concentration of invading fluid and x is the
distance along the capillary tube. TAYLOR (1953) has given
the solution of this equation assuming that longitudinal
molecular diffusion is negligible compared to the radial dif-
fusion. According to NIELSEN and BIGGAR (1962), capillary
models fail to describe the miscible displacement because
soil pore sequences are neither cylindrical nor constant in
diameter. At the same time a mathematical solution exactly
describing the solute dispersion through an exactly known
complex pore geometry will not be possible. A statistical
description of solute transport through porous medium dis-
regarding the actual flow path and physical properties of
fluid was proposed by SCHEIDEGGER (1954), BERAN (1955)
and DAY (1956). This model assumed thar the solute trans-
fer is taking place as a result of hydrodynamic mechanism
not involving molecular diffusion. Displacement was treat-
ed as random walk process and using central limit theorem
the probability function of displacement was found to be
normal with variance proportional to time. Upon integra-

tion the following solute transport equation was obtained
C 1 X—vt

EO' = —ierfc(m) (3)

where C0 is concentration of displacing solution, x is the

distance, v is average pore water velocity, t is time and D is
factor of dispersion. The drawback with this equation is
that at x = vt, C/C, always comes out to be half, which is
practically not correct (NIELSEN and BIGGAR, 1962). A sto-
chastic model which does not have this drawback was pro-
posed by RIFAT et al. (1956) and EINSTEIN (1937). This
model assumes that fluid is a continuous medium and each
point has a flow path. The fluid moves as piston flow and
displacement is divided into two phases, motion and rest
phase. Time in motion phase is assumed small compared to
rest phase and probability of occurrence of rest phase is
considered independent of time and position. The concen-
tration distribution for this model is given by

C v X+vt._ 2V
— =2 [exp(— I,(S—+/xvt)dt
C, D!exP( /v (o VY @

Owing to the assumption that rest phase times are much
greater than motion phase times, this equation fails to
describe miscible displacement for vx/D<10.
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Following differential equation describing the solute trans-
port for a constant molecular diffusivity D for a given
porosity and average flow velocity was given by LAPIDUS
and AMUNDSON (1952)

2
oC Dac oC (5)

This equation does not consider adsorption or solute inter-
action with solid phase as well as chemical or biological
reactions. The comprehensive miscible displacement equa-
tion for those solutes whose vapor phase is negligible was
given by BIGGAR and NIELSEN (1967)

%) 0 oC 2}
—(p,C, +6C)=—D,—)-—(J,.C) - 6
at(pb a 1) aZ( e aZ) aZ( W l) rs ()

where p, is the bulk density of soil, 0 is the volumetric water
content, C; and C, are dissolved and adsorbed solute concen-
trations, D, is the effective diffusion-dispersion coefficient, ],
is the water flux, I is the reaction term, tis time and z is depth.

One additional term is added to equation (5) when chemi-
cal adsorption which accounts for the interaction between
the chemical and solid phase is also considered. Following
is the one dimensional solute transport equation describing
transport through a homogeneous medium during steady
state flow with adsorption

2
LB _plft ¢ 7)
& 6 at

ox? ox
where S is the adsorbed concentration (MM™1). The solution
of above equation depends upon the knowledge of the rela-
tionship between adsorbed concentrations, S, and the solu-
tion concentration, C. Adsorption or exchange reactions
perceived as instantaneous are described by equilibrium
isotherms S(C), which can be of the mass action, linear, Fre-
undlich, Langmuir or any other functional form (NIELSEN
etal., 1986). Besides adsorption, the reactive process such as
first-order degradation or zero-order production can also be
taken into account during miscible displacement processes.
Therefore, the comprehensive convection-dispersion equa-
tion (CDE) for one dimensional transport of reactive
solutes, subject to adsorption, first-order degradation, and
zero order production, in a homogeneous soil, is written as

2
ox

5 ac ac,
2@, +6C, +p,9) = (GDgE;:—H%D ~ —ch]

®
- eulcr - pbuss + e'Yl(x) + pbys (X)
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where C, is the volume-averaged or resident concentration
of liquid phase (ML), S is the concentration of the
adsorbed phase (MM), C, is the gaseous solute concen-
tration (ML3), a is the volumetric air content, D, is the soil
gas diffusion coefficient, J_ is the volumetric water flux den-
sity (LT"Y), p, and p are first-order decay coefficients for
degradation of the solute in the liquid and adsorbed phases
respectively (T-1), M (ML3T-1) and Y, (MM-1T1) are zero-
order production terms for the liquid and adsorbed phases,
D, 8, p;,, x and t are same as defined above. The one dimen-
sional form of equation (8) is also valid for a multidimen-
sional flow process, provided that the lateral boundaries
normal to the mean flow direction do not have mass enter-
ing or leaving through them (JURY and FLUHLER, 1992).

2.2 Nonequilibrium Transport Models

The application of equation (7) or (8) to transport through
laboratory soil columns and in fields having relatively uni-
form soils involving nonreacting or weakly reactive solutes
was found to be fairly successful. However, for strongly
adsorbed chemicals and aggregated soils this equation has
not performed very well. One of the various reasons is that
the chemical transport through soil does not take place in
equilibrium. It is affected by a variety of physical and chem-
ical nonequilibrium processes. This paved the way for the
examination of diffusion controlled or chemically controlled
kinetic rate reactions, or both of the form dS/dt = £(S,C).

2.2.1 Two Site Model

SELIM et al. (1976), and CAMERON and KLUTE (1977) have
proposed a two site chemical nonequilibrium model where
the adsorption term consists of two components, one is gov-
erned by equilibrium adsorption and the other by first order
kinetics. The sorption or exchange sites in this model are
assumed to account for instantaneous adsorption (type-1
sites) and time dependent kinetic adsorption (type-2 sites).
At equilibrium, adsorption on both types of sorption sites
is described by following linear equations

S, =K,C=FK,C ©)
$,=K,C=(1-FK,C (10)

where subscript 1 refers to type 1 or equilibrium site and
subscript 2 refers to type 2 or kinetic sites respectively and
F is the fraction of all sites occupied by type 1 sorption sites.
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Total adsorption at equilibrium is

$=§,+S, (11)
Because type 1 sites are always at equilibrium therefore
35, oc
it W -} g
PR, S (12

The adsorption rate for type 2 kinetic nonequilibrium sites
is given by a linear and reversible first order equation of fol-
lowing form

as
—a—:— = o[(1-F)K,C-S,

(13)
where 0. is the first order rate coefficient. Combining above

equations with (7) lead to following formulation (NKEDI-
Kizza et al., 1984)

2
(1+FpKD)_6_C_+p552 _—_Dg_ o (14)
6 "ot 6 o ox ox
2.2.2 One Site Model

The one-site kinetic nonequilibrium adsorption model is a
special case of the two-site adsorption model where para-
meter F is assumed to be zero. This leads to the assumption
that all the adsorption sites present are only type 2 or kinet-
ic or time dependent sites. This simplification leads to the
following set of equations

§+B@=D6_C_V_a£ (15)
ot 0 ot ox® ox

oS

P2 _ o[K,C-S,] (16)
ot

2.2.3 Two Region Model

Physical nonequilibrium is modeled using a two region (dual
porosity) type formulation. In this formation the medium is
assumed to contain two distinct mobile (flowing) and immo-
bile (stagnant) liquid regions, and mass transfer between the
two regions is modeled as a first order process. Convective
diffusion transport is assumed to take place in the mobile
region while transfer of solutes into and out of mobile region
is assumed to be diffusion controlled. The one dimensional
solute transport for an exchanging solute during steady state
flow through a homogeneous porous medium, where the lig-
uid phase is presumed to consist of a mobile and immobile
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region and includes a Freundlich type equilibrium adsorp-
tion-desorption process (VAN GENUCHTEN and WIERENGA,
1976) can be described by a two region model as below

ocC oS oC; oS,
m m . im —-f m
0, ™ +fp———at +6,, a +( p-—-—at 17)
2
6.0, 25 —6,v, Zn
ox? ox
oC, oS,
0p—+(1-f)p—=0a (C_,-C, (18)
- 1-1p p (Cn—=Ci)

where tis time (T); C_ and C, _ are the solute concentrations
in the mobile and immobile liquid phases (ML3) with cor-
responding volumetric water contents 8 and 6, (L3/L3)
respectively; S and S, are concentrations of adsorbed
phase in mobile and immobile phase respectively (MM1);
R and R  are retardation factors accounting for equilib-
rium type adsorption processes in mobile and immobile
regions respectively; D o 1S apparent diffusion coefficient of
mobile liquid phase (L?T-1), x is the distance from the
inflow boundary in the direction of flow (L), v_ is the aver-
age mobile pore water velocity (LT"!); a is the first order
rate coefficient (T-!) and parameter f represents the mass
fraction of solid phase that is in direct contact with the
mobile liquid phase. If the exchange process in both the
dynamic (S_)) and stagnant (S, ) region is assumed to be
instantaneous, linear and reversible process, Sm = KpCpys
and §; = KC, ; and the total adsorption can be repre-
sented by

S=f5_+ (1S, (19)

For equilibrium adsorption, transferring these into equa-
tion (17) and (18) results in the following set of equations

m’

oC oC.
®, +pfKpy)—=+[6,, +A-)pKy ] —= =
ot ot
8°C oC 20)
= 9mIDm zm - emvm =
ox ox
(O + (- DPK,1 22 = a(C,, - ) @
2.2.4 Anion Exclusion Model

Certain anions interact with the solid phase of the soil and
are excluded from liquid zones adjacent to negatively
charged soil particle surfaces. The soil water phase is divid-
ed into mobile and immobile zones and anion exclusion is
assumed to be restricted to immobile water phase only. The
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immobile water phase is synonymous to either the smaller
sized pores inside dense aggregates, or to immobile water
along pore walls analogous to situation described by KRUPP
et al. (1972). For a freely extended diffuse double layer
(BorT and DE HaAN, 1979), anion concentration within an
individual pore increases roughly exponentially with dis-
tance from the pore wall. In the model described here, it is
assumed that such a nonlinear concentration distribution
can be replaced by an equivalent step function which has a
value of zero in the anion excluded part of the liquid phase
adjacent to the pore walls, and a value equal to that of bulk
solution near the center of pore. This assumption leads to
an equivalent exclusion distance, d,, near the pore walls
where concentration remains zero (KRUPP et al., 1972;
BorT and DE HaAN, 1979; VAN GENUCHTEN, 1981). The
specific exclusion volume, V__(cm3water/g soil) is given by

V, =d.A, (22)

Where A, is the specific surface area (cm?/g). Anion exclu-
sion volume can also be expressed in terms of an equivalent
volumetric soil-water content, 6

0_=V_p (23)

Assuming that anion exclusion takes place only in the
immobile zone and 6 is less than 8, , following transport
equations can be used to describe anion exclusion process

ex

0, o, 0, oC, _ 6_D Q—_%"—‘ -0V, &Ly (24)
ot ot ox ox
oC, _
0, = = Cn-Ca) 25)

where, a refers to that part of the immobile liquid phase
which is unaffected from anion exclusion process 6, = 8,
- eu

Equations (24) and (25) are similar to the equations (20)
and (21) when adsorption is neglected and the immobile
sink is reduced from 6, to 6.

3. Nondimensional Solute Transport Equations

In table 1 nondimensional parameters transferred in each of
the above models are presented. Substitution of these para-
meters into equation (7) results in following nondimen-
sional equilibrium adsorption equation

8C, 18°C, oC

1

& Poaz oz (26)
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Substitution of dimensionless variables listed in table 1 in
the equations (13), (14); or (15), (16); or (20), (21); or (24),
(25) results in the following nondimensional nonequilibri-
um equation

_15°C, &,

C L q_mrC oG, 27
PR oT +(-PR oT P 872 oz @)
(1-PR Z?r = o(C, - C,) (28)

nondimensional initial and boundary conditions for above
equations are described in the next section by (36) to (40) for
continuous tracer application and (43) to (45) for pulse appli-
cation. It can be understood from the above sections that all
the nonequilibrium phenomena discussed in this paper i. e.
presence of mobile immobile regions or presence of kinetic
and equilibrium sites, and anion exclusion can be represented
mathematically by equation (27) and (28). Including the
nondimensional first order coefficient for degradation and
nondimensional zero order production coefficient, the equa-
tions (27) and (28) are modified to obtain following set of
equations (VAN GENUCHTEN, 1981; TORIDE et al., 1993)

2
oC
(1-pR 6T2 =o(C, -C,)-1,C, +7,(2) (30)

The solutions of (29) and (30) have been derived by various
researchers for a variety of initial and boundary conditions
(LiNDSTROM and BOERSMA, 1973; CAMERON and KLUTE,
1976; LINDSTROM, 1976; VAN GENUCHTEN and ALVES,
1982).

4. Initial and Boundary Conditions for
Experiments

Analytical solutions of one dimensional convective disper-
sion equation (5) or (7); nonequilibrium two site equation
(13), (14); nonequilibrium one site equation (15), (16);
nonequilibrium two region equation (20), (21); and non-
equilibrium anion exchange equation (24), (25) can be
obtained for a large number of initial and boundary condi-
tions for both finite and semi-infinite systems (VAN
GENUCHTEN, 1981; VAN GENUCHTEN and ALVES, 1982).
Field experiments or laboratory experiments can be carried
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Table I: Nondimensional variables introduced in the solute transport
equations
Tabelle 1: Dimensionslose Variable in den Stofftransportgleichungen

With all the Equations
vt -C.
T=f Z=£ Pzz_l:. R=1+"pl<—n- Cl=C C|
L D 0 C,-C
With Two Site Equation
FpK O +FpKo R, |, Ca=BRL [ S =(-PKG
Ro=le==2 P, "% |7 v “Ti-PGE-C)
With One Site Equation
B=1R o = o(R-1)LIV c. =S5 —KoG
Kn (co - Ci)
With Two Region Equation
G=CC  |C=CulC  [p_Yal |, _Ba 0=2E
D, "8 q
_, . K, ., (1=DHpK, _0n+Kp _ 6nRy
Rm_1+—em— Rim—HT p K. R
¢ =5=C ,=Se=C T = Yabut 9=V
C,-C C,-C L
Anion Exclusion Equation
po Yol R=1-4, Totalte 1y G
D L 6
Cm - Ci Ca - Ci aL
¢ = c, = o= —
C,-C C,-C; q

out either for a continuous tracer application or the tracer
can be applied as a pulse. Dimensional and nondimension-
al initial and boundary conditions for both types of tracer
applications employed in the present study are discussed in
this section.

4.1 Dimensional Initial and Boundary Conditions for
Continuous Tracer Application

Analytical solutions of the above mentioned equations exist
for several sets of dimensional initial and boundary condi-
tions for CDE, two site and two region equation

C(x,0)=C,or0

C(x,0) = §,(x,0) =C; 0r 0

C,(x0)=C_(x0)=Cor0 (31)
At the inflow boundary of the column (x = 0), two differ-
ent conditions can be considered. One of them is a first type
or constant concentration boundary condition

C(0,1) = C,
C,(0,1) =C, (32)

and the other is a third type or constant flux boundary con-
dition
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oC
- D_éx— +vC
(33)

- Dm _a-(‘:& + vamI x=0 = VmCO
ox

All the variables remain the same as discussed earlier. It has
been reported that for column displacement experiments
where a chemical is applied at a constant rate, use of bound-
ary condition specified by equation (32) leads to mass bal-
ance errors. For large values of (D/v), the mass balance
errors could become quite significant (VAN GENUCHTEN,
1981; PARKER and VAN GENUCHTEN, 1984). However,
equation (33) conserves mass inside the soil column, if dis-
persion outside the soil is ignored. Therefore, a third type
inlet condition is preferred over first type inlet condition
(VAN GENUCHTEN and PARKER, 1984; TORIDE et al., 1993).

In order to describe the outlet conditions it is assumed that
the concentration is macroscopically continuous at the out-
let and no dispersion occurs outside the soil. PARKER and
VAN GENUCHTEN (1984) have suggested that by assuming
that the upstream solute concentrations are not affected by
the outlet boundary, solutions for an infinite outlet condi-
tion can be applied to the finite region. The outlet condi-
tion for a semi infinite profile (0 < x < o0) and a finite sys-
tem of length L can be specified in terms of a zero concen-
tration gradient as below

aC
— (0,t) =0
;g s (34)
0, 1) = (0, ) = 0
(35)

EEL(Lt)—-o
(L=

The boundary condition (34) assumes the presence of a
semi-infinite soil column. When effluent curves from finite
columns are calculated using analytical solutions based on
boundary condition (34), some errors may be introduced.
Therefore, zero concentration gradient specified by equa-
tion (35) at the outflow is frequently used for column dis-
placement studies. However, there is no clear evidence
available to prove that the boundary condition (35) leads to
a better description of physical processes at and around x =
L. On the other hand, the inflow boundary condition at x
= 0, specified by (33), leads to a discontinuous distribution
at the inlet position and thus seems to contradict the
requirements of continuous distribution at x = L (VAN
GENUCHTEN, 1981).
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4.2 Nondimensional Initial and Boundary Conditions
for Continuous Tracer Application

The substitution of nondimensional parameters (table 1)
into dimensional initial and boundary conditions present-
ed by equations (31) to (35) results in the following nondi-
mensional initial and boundary conditions for both con-
centration type or first type and flux type or third type
boundary conditions

C(Z,0)=C(Z) or 0
C,(Z,0) = C,(Z,0) = C(Z) or 0 (36)

where C, is the initial concentration given as a function of
Z. The first type (concentration type) or a third type (flux
type) nondimensional boundary condition at inflow

boundary are described as

C,(0T)=1 (37)
_18C,(0,T) _
C,(0.T) P oy - (38)

Similarly, the nondimensional outflow boundary condi-
tions for a semi-infinite and finite column can be described
as below

%1 0, T)=0

oz )
aC, _8C, _ (39
—52—(00,—[—) = az (oo,T) = 0

aC, _

(EZ—)(LT) 0 (40)

4.3 Dimensional Initial and Boundary Conditions for
Pulse Application

Assuming that the concentrations are continuous across the
inflow boundary and input solution is well mixed, a first
type boundary condition across the inflow boundary for a
pulse type injection can be specified as

= C
C(0,1) { _ 00 (41)

A third type boundary condition for the pulse input for a

well mixed input solution can be specified as

0<t$t0
t>t,
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oC
-D—+vC | _ =VC, 0<t<tp
ax x=0
=0 t>1
- Dm 6acxm + Vmcml x=0 — VmCO for 0<tSt0
=0 for t>t,
(42)

The initial condition and the boundary condition at out-
flow remain the same as described by (31) and (34) or (35)
respectively. The boundary condition at inlet described by
(41) becomes inappropriate when the input solution is not
well mixed. Other arguments against the applicability of
(41) can be that the plane we consider as macroscopic
boundary has no physical relevance at the microscopic level
as irregularity in pore structure and morphology become
manifest at this level. Also the medium properties vary con-
tinuously over a finite transition zone of 1/2, where | is the
representative elementary volume (REV) of the porous
medium (PARKER and VAN GENUCHTEN, 1984).

4.4 Nondimensional Initial and Boundary Conditions
for Pulse Application

The nondimensional initial and boundary conditions for
pulse type of tracer applications are obtained by substitut-
ing the nondimensional variables given in table 1 into the
initial and boundary conditions presented at (41) and (42)

=1 0<T<T,
(0.0 { =0 T>T, (43)
-%‘a—aczi+c1|z=O 1 0<T<T,
_ T>T, (44)
aC aC
—az—‘(oo,T) = a—zz—(w,T) =0 (45)

4.5 Analytical Solutions

Analytical solutions of equilibrium and nonequilibrium
transport equations for given boundary conditions are pre-
sented in table 2. Concentrations and boundary conditions
are given in their dimensionless form.
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Table 2:  Analytical solutions of equilibrium and nonequilibrium transport equations
Tabelle 2: Analytische Lésungen von Gleich- und Nichrgleichgewichtstransportgleichungen

Concentration-type boundary conditions:

Flux-type boundary conditions:

CO,T) =1 8C(w.T) _
az

0

_18C(Z,T) 8Ci(,T)
P oz oz

_____+c,(z,T)] =1 | =2—2=0

Z=0

CDE 1 P Y 1 d(2 Y
C. C.—-2—erfc [m] ‘R-T) +Ecxp(P)~erc(m]

2-(R+T):[

VA %
C.= —l-erfc{:(LJ (R - T)} + (P—T] - expi:— L ®r- T)=J
29 4Rt Y aRT

1 PT p VA
- —2— - [l +P+ -R——] -exp(P) - erfc{(m) (R+ T)j’

DIMENSIONLESS EXIT CONCENTRATION

NE- 1 p YA 1 p VA 1 PV pr VA P
g(g)dels G(1)= -ierfc (%RJ -BR-1) |+ Eexp(P) - erf] (4BRTJ -BR=-17)| | G(1) =-2~erfc [4BRTJ “BR-1) |+ (?BEJ . exPi:_:t_ﬁl: -(BR + 1){'
VA
- % - [1 +P+ —;%] -exp(P) - erf{(‘i;m) (BR + ‘E)J
F(1) 5 s
BRIV el B BR -1 o 2V e - R -1
Fr)= 1[47:[51} ex"[ pre PR ] ) (TEBRT] GXP[ 2pRe (PR ]

P
~-—— - exp(P) - erfc
3R exp(P)

p VK
) 0%

5. Numerical Methods

The four numerical methods used frequently are finite dif-
ference method (FDM), finite element method (FEM),
method of characteristics (MOC) and method of random
walk (MORW). When flow processes are simulated along
with migration, numerical stability, consistency criteria and
convergence criteria need to be considered carefully. As stat-
ed before every numerical model needs to be validated and
compared with analytical solutions. The parabolic (diffusion
equation) and hyperbolic (wave equation) properties of
transport equations require often more than just plain meth-
ods and sometimes have proven quite complicated (KINZEL-
BACH, 1987; LUCKNER and SCHESTAKOW, 1991). The spatial
and independent variables such as dispersivity are discretized
to develop a simulation model. The dependent variables like
concentration and temperature are approximated at a limit-
ed number of points in space (%, y;, z) and time (t). Dis-
cretization results in a set of algebraic equations. The step
lengths Ax, Ay, Az and At are selected to obtain high accura-
cy for given conditions and available data. The resulting sys-
tems of equations can be either solved with direct, or iterative
methods. Usually the former requires more storage and the
later more simulation time. An example for direct methods
with constant At is the Crout method, for iterative methods
the ADI- (block iteration) or the GAUSS-SEIDEL-method
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(point iteration) combined with overrelaxation. Iterative
methods are recommendable for nonlinear models.

5.1 Numerical Models

Simulation models for migration processes in saturated and
unsaturated zones fundamentally differ with regard to
kinetics, dimensionality, geometry and applied algorithm.
Some of the available programs are briefly described in the
following sections.

5.1.1 One Dimensional Models

The Pesticide Assessment Tool for Rating Investigations of
Transport (PATRIOT) (IMHOFF etal., 1993) is composed of
a pesticide fate and transport model (PRZM2) (MULLINS et
al., 1993), a comprehensive database, an interface facilitat-
ing data exploration, interaction tools and user-selected
methods of summarizing and visualizing model results.
PRZM2 simulates the fate of agricultural pesticides both in
the crop root zone and the underlying unsaturated zone and
links together the two models PRZM and VADOFT
(Vadose Zone Flow and Transport Model using a finite ele-
ment code). PRZM is a one-dimensional, dynamic model

,\
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which also includes soil temperature simulation, volatiliza-
tion, vapor phase transport, irrigation simulation and
microbial transformation. This model employs two options
for solving the transport equations. One is a backward dif-
ference implicit scheme that may be affected by excessive
numerical dispersion at high Peclet numbers. And second is
MOC which eliminates numerical dispersion while increas-
ing model execution time. Further developed from PRZM,
additionally accounting for an improved calculation of evap-
otranspiration and volatility was PELMO (Version 2.01).
Freundlich constants can be defined for each layer, pKA val-
ues are used to correct the sorption coefficient through pH,
and an increase in sorption with time is also included.

The 1D-FDM Vadose Zone Leaching Model (VLEACH)
(Rav1 and JOHNSON, 1997) employs linear isotherms describ-
ing the partitioning of the pollutant between the soil, liquid
and vapor phases assuming local or instantaneous equilibri-
um. Dispersion and in situ degradation or production are
neglected in this model. Leaching is simulated in a number of
polygons each with different soil properties, recharge rate,
depth to water or initial conditions. Likewise CHEMFLO
utilizes the 1D FDM to simulate advection, dispersion, first
order decay in liquid and solid phase, zero order production
or decay and linear equilibrium adsorption (NOFZIGER et al.,
1989). HYD1D (INTERNATIONAL GROUND WATER MODEL-
ING CENTER, 1998) calculates 1D transient water flow, solute
transport and heat movement in variably saturated porous
media employing the Galerkin linear FEM. The flow equa-
tion includes liquid-phase water flow, hysteresis in soil
hydraulic functions, scaled unsaturated soil hydraulic proper-
ties and water uptake by roots. The solute transport equation
accounts for ionic or molecular diffusion, dispersion, linear or
nonlinear equilibrium adsorption, first order decay, zero order
production and solute uptake by plants. Both equations are
assumed not to be influenced by temperature variations.

TRANSOL (KROES, 1991) is a dynamic model for trans-
port, degradation and adsorption of a single solute in the
soil. The programs WATBAL or SWATRE deliver the water-
quantity input to the program TRANSOL. The solution
method is partly analytical since the transport equation is
solved analytically at every time step for every freely chosen
layer. For the calculation of the adsorbed concentration
either linear adsorption or nonlinear Freundlich-adsorption
is assumed. An iterative method for the solution of nonlin-
ear sorption is employed, using the transport and conserva-
tion equation to calculate the Freundlich coefficient.

Die Bodenkultur

102

The seasonal soil compartment model (SESOIL) utilizes a
FDM developed for long-term hydrologic, sediment and
pollutant fate simulations. A soil column extending from
ground surface through the unsaturated zone represents one
compartment. Beside advection and diffusion the included
processes for pollutant transport and fate component are
volatilization, adsorption or desorption and chemical degra-
dation or decay (BONAZOUNTAS and WAGNER, 1984).

5.1.2 Two and Three Dimensional Models

SWMS_2D (SIMUNEK et al., 1994) is a computer program
for simulating two-dimensional water flow and solute trans-
port in variably saturated media. The flow equation incorpo-
rates a sink term to account for water uptake by plant roots.
The transport equation describes linear equilibrium adsorp-
tion, zero-order production, and first-order degradation. The
flow region may have an arbitrary degree of local anisotropy
and may be delineated by irregular boundaries. Galerkin-
type linear finite element schemes are used to solve the equa-
tions numerically. For the solution of the matrix equations
resulting from discretization either Gaussian elimination for
banded matrices, a conjugate gradient method for symmet-
ric matrices or the ORTHOMIN method for asymmetric

matrices is used with respect to the size of the problem.

The FEM Seepage Analysis Model (SEEP/W, 1991) is a soft-
ware-tool to model transport and pore water-density-distrib-
utions in porous materials. It contains saturated and unsatu-
rated stream flow analysis, equilibrium and transient condi-
tions, two-dimensional and axial-symmetric problems, dif-
ferent types of soil and anisotropic hydraulic conductivity
coefficients. For computing the FEM is used. The flow veloc-
ities calculated by SEEP/W are utilized by a model for finite
element contaminant transport analysis (CTRAN/W, 1993)
to simulate the migration of dissolved solutes through porous
materials, including diffusion, dispersion, linear adsorption
and radioactive decay. For problems where advective mass
transport is the dominating process CTRAN/W offers the
method of particle tracking. The transport of solutes is com-
puted as the movement of particles proportional to flow
velocity and magnitude of the time step, the density of parti-
cles in a certain area representing the specific concentration.
VS2D is a 2D finite difference program for flow and solute
transport in variably saturated, single phase flow in porous
media including first-order decay, equilibrium adsorption
(FREUNDLICH or LANGMUIR) isotherms and ion exchange.
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V82D simulates cross-sectional or cylindrical variably satu-
rated flow including non-linear storage, conductance, sink
terms and boundary conditions, implementing ponding,
infiltration, evaporation, plant root uptake and seepage faces
(LAPPALA et al., 1987; HEALY, 1990). The Saturated-Unsatu-
rated Ground Water Transport Model (SUTRA) (Voss,
1984), a 2D hybrid finite element and integrated finite dif-
ference model, computes fluid movement and transport of
either energy or dissolved substances in saturated ground
water flow systems for areal and cross-sectional flow, and in
the unsaturated zone for cross-sectional flow. The transport
equation for single reacting solutes includes sorption, zero
and first order decay, zero order production, hydrodynamic
dispersion and molecular diffusion. The moisture-character-
istic curve can be calculated by three options during simula-
tion of unsaturated flow.

TARGET (INTERNATIONAL GROUND WATER MODELING
CENTER, 1998) employs an integrated FDM and includes
independent programs for transient ground-water flow and
solute transport. One is a 2D vertically integrated, con-
fined/unconfined, second a 2D vertically oriented, variably
saturated, density coupled, third a multi-layer confined/
unconfined, and fourth a 3D saturated, density coupled
computer code. Some of the incorporated processes and
mechanisms are heterogeneity, anisotropy, hysteresis in the
unsaturated zone, advection, dispersion, molecular diffusion,
density effects from contamination or salt water intrusion,
viscosity effects, linear equilibrium adsorption and first-order
decay. The 3D FE model of WATER flow (FEMWATER)
(YEH and WARD, 1980), is a density driven flow and trans-
port model for the saturated-unsaturated zone. It is a combi-
nation of the original FEMWATER (just for flow) and the
LEWASTE program calculating the transport process.

5.1.3 Models Accounting for Nonequilibrium

Leaching Estimation and Chemistry Model (LEACHM)
was produced by WAGENET and HUTSON (1989). The water
regime and chemistry together with the transport of solutes
in partially saturated soils can be simulated to a depth of
about two meters. The program consists of four sub-models
describing nitrogen transport and transformation, pesticide
displacement and degradation, transient movement of eight
inorganic ions and the water regime. Pesticides and nitrogen
are assumed to obey a linear sorption isotherm. Additional
to the local equilibrium assumption, or a linear isotherm of
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pesticide sorption (Version 2), sorption kinetics i.e. two-site
sorption using linear sorption isotherms for both sides, and
nonlinear isotherms (Freundlich equation) can be chosen in
Version 3. The transformation and degradation rate con-
stants of the respective pathways are of first order. All four
sub-models include estimates of plant growth and adsorp-
tion of water and solutes by plant roots beneath a flexible
means of describing precipitation and surface evaporation of
water. In order to adjust rate constants according to temper-
ature, a heat flow simulation is incorporated in the first two
models. The Crank-Nicolson implicit method and the
Gaussian elimination (Thomas algorithm) are applied.

CHAIN_2D (SIMUNEK and VAN GENUCHTEN, 1994) cal-
culates two dimensional movement of solutes in sequential
first order decay reactions, variably saturated water flow and
heat transport. Nonequilibrium interactions between the
liquid and adsorbed concentrations, besides equilibrium
interactions between the solution and gaseous concentra-
tions can also be simulated. For each of the solid, liquid and
gaseous phases first and zero order rate constants, and addi-
tionally first order rate constants providing connections
between chain reactions are included in the solute transport
equations. The nonequilibrium two site adsorption model
accounts for instantaneous and kinetic sorption. Nonequi-
librium is realized with a generalized nonlinear empirical
equation while a linear dependency is assumed for the lig-
uid-gas-interaction. Galerkin type linear finite element
schemes are employed to solve the governing flow and
transport equations. The matrix equations are again solved
with either Gaussian elimination for banded matrices or the
conjugate gradient method for symmetric matrices, or the

ORTHOMIN method for asymmetric matrices.

SWACRO isa 1D dynamic, deterministic FD model and was
originally developed for water flow in the saturated and unsat-
urated zone (BELMANS et al., 1983; FEDDES et al., 1978). The
extended version implements the model concept of PESTLA
as a subroutine to simulate pesticide transport in the soil,
accounting for nonlinear sorption (Freundlich isotherm),
temperature dependent first order transformation and passive
plant uptake. Microbial transformation, transport in the gas
phase crop water use, crop yield and lateral transport of solutes
and pesticides are also included in SWACRO. The process of
preferential flow according for mobile and immobile concept
is incorporated as an option. Preferential flow through cracks
in clay soils can be described with imaginary drains, depend-
ing on the infiltration capacity.
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6. Practical Considerations
6.1 Methods of solution for transport problems

The physical and chemical transport models can be solved
analytically assuming that pore water velocity, soil water
content, dispersion coefficient, and soil bulk density are
constant in time and space. This situation is in contrast to
most of the field conditions were the flow and transport
regimes may be highly variable because of transient flow
induced by time-dependent boundary conditions, or
because of spatial and temporal variability in the hydraulic
and solute transport properties (TORIDE et al., 1993).
Hence, the applicability of analytical solutions for solute
transport problems is limited as compared to the more ver-
satile and flexible numerical solutions. Still, the analytical
solutions when applied over large spatial and temporal
scales provide rapid and initial estimates of scenarios. They
are also used to validate the numerical models. It has been
reported that analytical solutions also provide more insight
into the underlying physical and chemical processes than
the numerical solutions and are helpful for sensitivity analy-
ses to investigate the effects of various transport parameters.
Apart from this analytical solutions can be incorporated
more easily in stochastic approaches for describing solute
transport in heterogeneous soils (DAGEN and BRESLER,
1979).

6.2 Local Equilibrium Assumption

In order to model sorbent/sorbate interactions it has to be
discussed whether an equilibrium assumption describes
sorption sufficiently well, or if a kinetic sorption reaction
must be incorporated into the transport equation. When
velocities are slow compared to the rate of reactions the local
equilibrium assumption (LEA) may be justified, thus
reducing the complexity of transport models. However,
sometimes the LEA does not seem to be adequate for
describing reversible chemical reactions. Thus, it is very
important to investigate how fast reversible chemical reac-
tions must be before instantaneous equilibrium can be
assumed. VALOCCHI (1985) investigated transport equa-
tions including linear adsorption isotherms with some non-
equilibrium models, two implementing diffusion limited
reactions and one accounting for first-order chemical reac-
tions. He found that parameters such as the average linear
velocity, the dispersion and equilibrium distribution coeffi-
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cient or the source function determine the justification of
local equilibrium.

6.3 Adsorption Isotherms

Adsorption isotherms are used to describe the steady state
between the adsorbent and solute concentration. An
adsorption isotherm is valid only for a certain temperature,
pressure and soil composition. Impact of temperature on
adsorption from liquid solutions is smaller than on gas
adsorption. In view of a thermodynamically exact defini-
tion state of adsorption equilibrium cannot be termed real
equilibrium, since the way of the process and changes in the
sorbent structure may sometimes influence the final state
(SONTHEIMER, 1985). The numerous isotherm equations
are based on chemical, physical or thermodynamic model
assumptions or are solely empirical. Three adsorption
isotherms most frequently used in soil physics are (linear)
Henry, Freundlich, and Langmuir isotherm. Together with
several different dynamic models they are listed in the table
3, also presented is a model for competing species, occupy-
ing the adsorber places according to the ratio of their con-
centrations or activities, respectively.

Table 3: Isotherms
Tabelle 3: Isothermen

Equilibrium | Non-equilibrium  Processes near
rocesses | processes Equilibrium
Henry ) s=kie [ds/dt =k ds/dt=Jk;c - ks
Freundlich } equation 's= k;-c"" ds/dt = k;-c“ ds/dt = kg-c‘“ —kss
. Langmuir J s=spec/(btc) |ds/dt=ke-c-a-(n-s) ds/dt=ke-c-a-(n-s)- ky-a-s
| Competition reaction sifs;=k’ci/e; dsi/dt=K'-¢cps; [ dsy/dt=k’ -cyosp ~ k’2c8)

In table 3 s is the adsorbed concentration, c the solute con-
centration; s the maximum of sorbed concentration, a the
concentration of adsorbent, n the adsorption capacity [e. g.
in g/em®], b=k /ks, K =K /K, and k; . K, K, , are con-
stants (RICHTER, 1986).

The Henry isotherm is valid for small concentrations, k, is
called distribution coefficient. Freundlich postulated the
nonlinear equilibrium-isotherm with constant coefficients
ky (Freundlich-coefficient) and k, (Freundlich-exponens).
The Freundlich-exponent is usually lower than 1 and larg-
er than 0 and is enhanced with decreasing c. Thus it should
reach the value 1 in highly diluted solutions. This isotherm
is only valid for a certain range of concentration. Neither a
maximal adsorbed concentration nor the linear isotherm
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can be found as limit values. Another nonlinear equilibri-
um-isotherm was derived by Langmuir. Originally devel-
oped to describe gas-adsorption on solids the Langmuir
isotherm can be derived from a quite simple kinetic point
of view or with statistical thermodynamics. The kinetic
reaction of sorption is assumed to be formed by adsorption
and desorption with the reaction rate of adsorption, r,, =
k¢ (sm-s) . ¢, and the reaction rate of desorption, r des = k7 .
s (kG is the constant of adsorption rate, k7 the constant of
desorption rate). The first reaction depends on the solute
concentration and the free adsorber places on the surface of
the adsorbent, whereas desorption velocity is solely deter-
mined by the number of occupied places. If all adsorber
places are occupied a monomolecular covering of the sur-
face is obtained. s _, usually is, in contrast to the factor b, also
dependent on the type of sorbate and sorbent, and inde-
pendent of temperature. For large concentrations the
isotherm becomes independent of ¢, and s approximates its
maximum value s _. When c is small the Henry isotherm is
attained, that is, s /b equals the Henry constant k,. The
Langmuir isotherm with constant b should only be used for
that part of the isotherm where the curve of the integral
adsorption enthalpy over s can be approximated by a
straight line.

Three examples for the often reversible, rapid equilibrium
sorption mechanisms of pesticides are presented in Table 4
(SPARKS, 1989).

Table 4:  Sorption processes of pesticides
Tabelle 4: Pestizidsorption

() Van Genuchten et B _ k.'~- k) v _s-

al. (1974) & \kpy |
equilibrium:

(b) Lindstrom et al. _(kee), » &_ I(x-8) oRq

(1970) s [Kpp.] cexp(—2Bs) P Kiexp@s) [[Krph) cexp(=2Bs) s:’

depy/dt= - k- cgy
dep/dt = ki« cg) + kzr Cp2— k-3 Cp
dega/dt = ko cpy = k-2- Cf

() McCall, Agin u-—"—)cm—‘:’—)cﬂ:

(1985)

In table 4 K , are the forward and backward rate coeffi-
cients [h'!]; B is the surface stress coefficient; cg; the piclo-
ram bound at fast desorbing sites, cg, the picloram retained
at slow desorbing sites, c; the free form of picloram, k, the
fast desorption rate coefficient, k, the slow desorption rate
coefficient,and k , is the reversible slope sorption rate coef-
ficient

In table 4a reversible nonlinear kinetics is assumed, and for
equilibrium the Freundlich-equation s = kg . ¢ with the
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Freundlich coefficient kg = k,’0k)’py is obtained. In table
4b a sticking probability for the sorbate on the sorbent sur-
face, permitted to change with the degree of surface cover-
age, is introduced. Adsorption and desorption energies can
vary with coverage. In table 4c a two site model for pesti-
cide desorption kinetics using a reversible first-order equa-
tion for pichloram desorption from soil was used by
McCaLL and AGIN (1985). The pesticide could be desorbed
slowly and reversible from B2-sites, but rapidly, and per-
haps also reversible, from B1-sites.

6.4 Iterative solution of an equation accounting for
storage and kinetic processes

In the above sections several equilibrium and nonequilibri-
um solute transport models along with their analytical solu-
tions for different boundary conditions are given. Several
commercially available software for modeling solute trans-
port through porous media employing numerical or ana-
lytical solutions of transport equations are also described
above. In case the source code of a software is not available,
the storage and kinetic processes existing in these equations
can be separately simulated and verified. In this paperas an
example an iterative solution strategy for equation (7) addi-
tionally including storage and kinetic processes, sources and
sinks is presented. Divergence and all spatial dependencies
of the parameters are neglected and thus an ordinary non-
linear differential equation is obtained as given by (46).

d(n, ‘ltl(tt) -o(t)) = A(t)-n, -R(t)-c(t) +q(t) (46)
_s(t)n +c(th, . s(th, (47)
R(t)= (b, =1+ cth,
_ ko) 4
s(t)" 1+k2dc(t)’ o
M
M) = m (49)

where c is the partial density of the liquid phase [g/m 3], s
the density of the solid phase [g/m?], k, , ,4 are adsorption
coefficients [m_3/g], A, is a reaction rate [1/s], A, a reaction
coefficient [m_3/g], n, the volumetric content of liquid
phase [mw3/mR3], n; the volumetric content of the solid
phase [rnf3/ mR3], V an exponent [—], R the retardation fac-
tor [-], and q a source/sink [g/ mR3s] .

50 (2) 1999



M. K. Shukla, S. Klepsch and W. Loiskand!

By selecting the parameters ko Koy and Vv in (48) three dif-
ferent adsorption isotherms can be computed through one
equation. A kinetic reaction of first order results when A <0
and A, = 0in (49),2 Michaelis-Menten kinetic for A, < 0 and
A, > 0. Because of the restrictions in equation (46) the only
discretization has to be carried out in time. A centralized
scheme is used to approximate (46) and all terms without time
derivations are weighted by a factor 1/2. For constant R and
dividing (46) by (n,, . R) the following equation is obtained:

2@:2—$'—A2=§[m_m.c@_m+ﬂ§%§—”}+

W

%[xarca>+—39—} (50)

)
n, R

and for this case the iteration (time-dependency is not
explicitly written but as an index, p is the iteration index)

] t— At
cp’t=ct-At+—-At-]:k-c+ ! } +
2 n, R

1 p—Lt
oAt Acr—
2 n, R

(1)

can be used to calculate the concentration. For R being not
constant, the next equation is employed:

(cp—l,t +ct—-At) 1
RV .(Rp— ,t_Rt—At)Jr

(Rp"_lyt +Rt—Atj

t— At p-1t
4 +—1—-At~ A-c+ 4 (52)
n,-R 2 n, R

A computer code can now be developed for equation (52)
and the variables ¢, s, R and A can be calculated for given
parameters k3, k3, A}, Ay, v, np 0, q and initial values
for c. In order to test a software the boundary conditions
should be set so that they represent the above discussed zero
dimensional problem.

Pt

At Ao
2

Appendix: List of Notations

C Solution concentration (M)

o Input concentration (M)

Dimensionless solution concentration of mobile lig-

uid phase for TRM and of total liquid phase for TSM

,  dimensionless solution concentration of immobile
liquid phase for TRM and adsorbed concentration
for type 2 kinetic sites in TSM

-

C
C
C
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Average concentration of immobile liquid phase
Average concentration of mobile liquid phase
Apparent diffusion coefficient of total liquid phase
(cm?/h) for EM and TSM

Apparent diffusion coefficient of mobile liquid phase
(cm?2/h) for TRM

Mass fraction of adsorbed sites in dynamic region for
TRM

Fraction of adsorption sites in equilibrium with solu-
tion concentration for TSM

Distribution coefficient for linear adsorption
(cm?/g)

Length of column (cm)

Peclet Number

Volumetric flux density (cm/h)

Retardation factor

Retardation factor for dynamic region for TRM
Retardation factor for immobile region for TRM
Adsorbed concentrations (MM™1)

Adsorbed concentrations associated with type 1
(equilibrium sites) in TSM

Adsorbed concentrations associated with type 2
(kinetic sites) in TSM

Adsorbed concentrations in the dynamic regions of
soil in TRM

Adsorbed concentrations in the stagnant regions of
soil in TRM

Time in hours

Time of applied concentration pulse, hours

pore volume or dimensionless time

dimensionless pulse time

Average pore water velocity (cm/h)

Average pore water velocity in mobile liquid region
in TRM (cm/h)

Dimensionless distance

Distance (cm)

Rate coefficients: first oder mass transfer coefficient
in TRM and first order kinetic rate coefficient in
TSM

Dimensionless partition coefficient

Volumetric water content

Volumetric water content in mobile liquid region
Bulk density (g/cm?)

Fraction of liquid phase considered to be mobile in
TSM

Dimensionless mass transfer coefficient
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