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1. Introduction

Soils are extremely heterogeneous entities (COLEMAN and
CROSSLEY, 1996). The spatial variability of soil organic mat-
ter dynamics involving various soil microbial processes can
be manifested at the microscale, plot scale, landscape- and
regional scale (PARKIN, 1993). The variability of chemical
and microbiological properties of agricultural and forest
ecosystems is well known at the plot scale (BONMATI et al.,
1991; VAUGHAN et al., 1994; BAHRI and BERNDTSSON,
1996; STORK and DiLLY, 1998); much less information is

available on the microscale. In soil ecology, hierarchical
approaches have gained interest over the last two decades
(ALLEN and STARR, 1982; O’NEILL et al., 1986). TISDALL
and OADES (1982) described the hierarchical nature of
processes responsible for strucruring soils. In many soils,
microorganisms and/or microbially mediated processes
contribute to forming aggregate structure across five orders
of magnitude, beginning at the level of clay particles
(0.2 pm), through fungal and plant debris (2 pm and
20 pm), up to a 2-mm diameter soil crumb. A hierarchical
approach to soil organisms that considers three different

Zusammenfassung

Dieser Artikel gibt einen Uberblick iiber neuere Untersuchungen zur organischen Substanz und zu Bodenorganismen,
die auf unterschiedlichen Skalenebenen durchgefithrt wurden. Es wird der Frage nachgegangen, ob eine Ubertrag-
barkeit von Ergebnissen, die auf kleinskaligem Niveau gewonnen wurden, auf eine héhere Ebene méglich ist. Pico-
und nano-skalige Untersuchungen haben bisher zur Ermittlung der Struktur und der chemischen Zusammensetzung
der organischen Substanz und der Mikroorganismen sowie deren Wechselwirkungen beigetragen. Da der Abbau der
organischen Substanz im Boden sehr stark von der riumlichen Verteilung dieses Substrates abhiingig ist, haben Unter-
suchungen auf der mikroskaligen Ebene in den letzten Jahren zum Verstindnis des Mechanismus des Kohlenstoff-
und des Stickstoffkreislaufes beigetragen. Mikroskalige Untersuchungen wurden hiufig an unterschiedlichen Aggre-
gatfraktionen oder spezifischen Mikrohabitaten durchgefiihrt. Auf der Plotebene wurde hauptsichlich der Einfluf der
Bodenbewirtschaftung auf den Umsatz der organischen Substanz untersucht. Bei diesen Untersuchungen wurde u.a.
die Quantitit und Qualitit der Ernteriickstinde und ihre zeitliche und rdumliche Verteilung und das Verhltnis von
ober- und unterirdischer Biomasse in Abhingigkeit vom Nihrstoffangebot getestet. Die vorliegenden Daten werden
in den letzten Jahren auch verstirkt zur Modellierung auf der regionalen Skala verwendet. Geostatistische Methoden
konnten riumliche Zusammenhinge zwischen bodenbiochemischen Prozessen und Standortseigenschaften auf der
Landschaftsebene ermitteln. Aus der Literaturiibersicht kann der Schluff gezogen werden, dafl Untersuchungen auf
den einzelnen Skalenebenen nur spezifische Fragen beantworten kénnen und daf ein vollstindiges Verstindnis eines
Okosystems nur durch die integrative Betrachtung von Untersuchungen aller Skalenebenen gewonnen werden kann.

Schlagworte: Organische Substanz, mikrobielle Biomasse, Bodenenzyme, Skalierung.
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Summary

The aim of the present study is to provide an overview of recent investigations on soil organic matter am% soil microor-
ganisms at different hierarchical levels (pico-, nano-, micro-, macro- and regional-scale) and to‘ ell'1c1date whether
results at any one level can be up-scaled to higher hierarchical levels. Pico- and nano-scale investigations are usec% to
reveal the structure and chemical composition of organic substances and microorganisms as well as the interaction
between biota and humic substances. Since the decomposition rate of residues in soils depends much on their loca-
tion within the soil, studies on the micro-scale enable researchers to delineate the mechanisms driving C and N
turnover. During the last decade, micro-scale investigations concentrated either on aggregates yielded by different
physical separation procedures or on different microhabitats characterized by high turnover of organic material. Plot-
scale investigations were mainly perfomed to understand the influence of soil management on soil organic matter
turnover; the parameters considered were changes in the quantity and quality of plant residues entering the soil, their
seasonal and spatial distribution, the ratio berween above- and below-ground inputs, and changes in nutrient inputs.
In addition, many plot-scale investigations of chemical and microbiological properties from the range of different soil
ecosystems provide not only a useful database to explain potential changes within a single field or plot, but also a data-
base with which to model processes on the regional scale. Landscape-scale analyses by geostatistical methods are now
recognized as a useful tool for identifying and explaining spatial relationships between soil biochemical processes and
site properties. In conclusion, investigations on each level of resolution may answer specific questions, but a complete

understanding of a soil ecosystem requires an integrative view of investigations at all levels of resolution.

Key words: Organic substances, microbial biomass, soil enzymes, scaling,

levels is outlined in BEARE et al. (1995). In the aggregatu-
sphere, bacteria, amoebae, and certain nematodes have
varying degrees of success in gaining access to the prey biota
of interest, whereas at a coarser level of resolution interac-
tions between microbes and the fauna in the rhizosphere or
at the soil litter-interface have been documented. At the
next level of resolution, which extends from many cen-
timerters to several meters across the landscape, the activities
of macrofauna such as earthworms or burrowing beetles,
influence microbial, chemical and physical processes of
soils. The hierarchical view of COLEMAN et al. (1992) and
CoLEMAN and CROSSELY (1996) covers the range from a
molecular level up to watersheds and beyond (Figure 1).
The conceptual diagram clearly shows that investigations
on each level of resolution may answer specific questions,
bur that a complete understanding of a soil ecosystem
requires an integrative view of investigations at all levels of
resolution.

Therefore, the aim of the present study is (1) to give an
overview of recent investigations on soil organic matter and
soil microorganisms ar different hierarchical levels (pico-,
nano-, micro-, macro- and regional-scale) and (2) to eluci-
date whether results at the single level can be up-scaled to
higher hierarchical levels.
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2. Pico- and nano-scale investigations

Pico- and nano-scale investigations are used to expose the
structure and chemical composition of organic substances
and microorganisms as well as the interactions between biota
and humic substances. The study of soil microorganisms can
identify the organisms, unravel their relationships, deter-
mine their numbers, and measure the rates of physiological
processes (PAUL and CLARK, 1996). The last decade has been
marked by a rapid increase in the number, reliability and
sensitivity of techniques in soil microbiology. Beside
process-oriented studies and physiological analyses {e.g.
plate counts, enzymes, thymidine uptake), the estimation of
signature molecules such as phospholipids, ergosterol, respi-
ratory quinones and ATP content can improve our under-
standing of the biotic activity, biomass and structure of the
microbial community (KATAYAMA and Fujig, 2000). For
example, the isoprenoid quinones present in the membranes
of mitochondria or chloroplasts are essential components in
electron transport systems of most soil microorganisms.
Since many such microorganisms have only one major
quinone and since the major quinone does not change with
their physiological condition, this biomarker is a high poten-
tially powerful indicator of microbial diversity.

Whereas signature molecules rapidly decomposed after
the death of soil microorganisms, physical and chemical
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Hierarchical View of Soil Ecology

regional global

i

Figure 1: Hierarchical view of soil ecology ranging from a molecu-

lar level up to landscape level. Feedbacks from vegetation
and soil interaction can reverberate back down to the mole-
cular level, flows are potentially bidirecrional (modified
afrer COLEMAN and CROSSLEY, 1996)

Abbildung 1: Hierarchische Gliederung bodenskologischer Unter-
suchungen von der molekularen bis zur Landschafis-
ebene. Wechselwirkungen zwischen Pflanzen und Béden
kdnnen sich auch auf die molekulare Ebene auswirken;
Fliisse kdnnen in beide Richtungen gelesen werden (mo-
difiziert nach COLEMAN und CROSSLEY, 1996)

protection of humic substances are responsible for the slow
degradeability of soil organic matter according to the model
of JENKINSON and RAYNER (1977). Physical protection will
predominantely be discussed in the following chapter.
Chemical protection of organic substances is apparently be
a major factor for long turnover half-lives of hundreds to
thousands of years, although recent studies show that phy-
sical protection of SOM may result in similarly low
turnover rates as chemical stabilization (HAIDER, 1999).
The degradeability of soil organic matter depends on its
chemical composition. In the past considerable efforts were
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undertaken to characterize SOM and specifically humic
substances by various analytical techniques. Especially }3C-
NMR (e.g. KROSSHAVN et al., 1992), pyrolysis-soft ioniza-
tion mass spectrometry (e.g. SCHULTEN and SCHNITZER,
1992) and FT-IR spectroscopy (e.g. HABERHAUER and
GERZABEK, 1999) and to some extent enzymatic methods
(JAHNEL et al., 1993) have advanced our knowledge about
the structural details of humics, their predominant func-
tional groups and elemental composition. We know that
humic substances contain mainly aromatic structures (phe-
nolic structures, lignin monomers and dimers), aliphatics
(n-alkanes, n-alkenes, fatty acids, n-alkyl monoesters,
mono- and polysaccharides) and N-compounds (SCHUL-
TEN and SCHNITZER, 1992) in different proportions go-
verned by origin and history of SOM. Little information
has been obtained to date on their conformational struc-
tures, although efforts were recently undertaken to investi-
gate the macromolecular structure and the impact of en-
vironmental factors (CONTE and PICCOLO, 1999; MYNENI
et al., 1999). Further insights can be envisaged by using
molecular modelling techniques (e.g- SCHULTEN and
SCHNITZER, 1997). These emerging methods and the dif-
ferent approaches for deriving 2- and 3-dimensional mod-
els are discussed in detail in GERZABEK et al. in this issue.

In the late 1980s, the idea of micelle-like structures of
bumic substances consisting of smaller hydrophobic mole-
cules emerged (WERSHAW et al., 1986); this contrasted with
the previous dominant theory of macromulecules derived
from SOM breakdown and subsequent polymerization.
Returning to degradeability, the hydrophobic character of
the micelles might play an important role. Figure 2 shows
the result of a laboratory soil incubation experiment con-
ducted with a 13C-labelled model substance (2-decanol).
The addition of humic acids (HA) of different hydropho-
bicity, as characterized by '3C NMR spectroscopy, resulted
in varying mineralization of the !3C-labelled substance.
Increasing hydrophobicity — HA from compost was less
hydrophobic than HA from lignite — retarded the mineral-
ization of the model substance (PiCCOLO et al., 1999).
These findings might be important for controlling mine-
ralization and for characterizing SOM in the future.

In conclusion, pico- and nano-scale investigations helped
to clarify the structure and chemical composition of soil
microorganisms and organic substances as well as the inter-
actions between biota and humic substances. These results
boost our understanding of chemical and biological
processes and structures at larger scales. A very impressive
example is the use of molecular techniques (phospholipid
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Figure 2: Mineralization of **C-labelled organic carbon (OC) as

influenced by addition of humic acids from compost
(HAC) and lignite (HAL). Mean values and standard
deviations (n = 3). Redrawn from PiccoLo et al. (1999)

Abbildung 2: Der Effekr von Huminstoffen gewonnen aus Kompost
(HAC) und Lignic (HAL) auf die Mineralisierung von
13C-markiercer organischer Substanz (OC). Mitrelwerte
und Srandardabweichungen (n = 3). Umgezeichner aus
Piccoro ecal. (1999)

fatty acids and DGGE profiles) that explain the distribu-
tion of the soil microbial communities at the micro-scale
{KANDELER et al., 2000).

3. Micro-scale investigations

The decomposition rate of residues in soils depends much
on their location within the soil (LADD etal., 1996). There-
fore, studies on the micro-scale enable researchers to deli-
neate the mechanisms driving C and N turnover. During
the last decade, micro-scale investigations concentrated
either on aggregates yielded by different physical separation
procedures or on different microhabitats charcterized by
high turnover of organic material.

Physical separation of organo-mineral particles and micro-
aggregates is typically based on two different concepts: i) se-
paration according to particle density and ii) separation
according to particle size. Density fractionation in heavy
organic liquids yields light fractions, which are considered to
be highly available, less composed material, whereas the
heavy fractions are considered to be associated with mineral
compounds, representing more processed and humified
organic material (CHRISTENSEN, 1992). Size fractionation
releases macro-organic matter and organic matter associated
with mineral particles forming organo-mineral particles and
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micro-aggregates of contrasting structure, function and sta-
bility. Size fractions are typically gained by wet sieving and
particle sedimentation or centrifugation, which accelerates
sedimentation processes. Both concepts of particle separa-
tion are commonly based on physical disruption of soil
aggregates using sonication (TISDALL and OADEs, 1980;
CHRISTENSEN, 1986; STEMMER et al., 1998) or mechanical
treatments (GUPTA and GERMIDA, 1988; JOCTEUR MON-
ROZIER et al., 1991, LENSI et al,, 1995). Generally, soil orga-
nic matter quality ranges from hardly decomposed plant
debris with a high C/N ratio and low density located in the
coarse fractions to highly processed humic substances for-
ming organo-mineral compounds with narrow C/N ratio
and high density found in clay separates. The decrease in the
C/N ratio with decreasing particle size and increasing parti-
cle density reflects the state of organic matter mineralization
and humification. This pattern controls the soil microbial
and enzymatic properties of organo-mineral particles and
micro-aggregates isolated from mineral soils. Figure 3 illus-
trates a characteristic distribution pattern of soil organic mat-
ter, C/N ratio and microbial properties within particle size
separates yield from a minimum tilled soil. Commonly,
much of the soil microbial biomass is associated with the
smaller sized fractions (fine silt and clay); the highly variable
amount of microbial biomass within the coarse fractions
strongly depends on the quantity and quality of the macroor-
ganic matter located there (JOCTEUR MONROZIER et al,
1991; KANDELER et al., 1999a; STEMMER et al., 1999). Inves-
tigations on the structural diversity of the microbial com-
munity using the PLFA pattern and 16s tRNA gene frag-
ments gave strong evidence that the microbial biomass with-
in the clay fraction was mostly due to soil bacteria. In con-
trast, a high percentage of fungal-derived PLFA was found in
the coarse sand fraction containing particulate organic mat-
ter (KANDELER et al., 2000). Enzyme activities of size frac-
tions largely depend on the enzyme investigated and the frac-
tionation procedure (LENSI et al., 1995; LADD et al., 1996).
STEMMER et al. (1999) and KANDELER et al. (1999a) showed
that the microbiological properties and enzyme activities of
the coarse-sized fractions are strongly influenced by tillage
practices; these fractions are therefore a valuable indicator for
organic matter input and management changes. Note that,
generally, isolated size or density separates do not reflect the
complex interactions within an intact and highly structured
soil aggregate where e.g. macroorganic matter is closely
covered by clay-sized organo-mineral particles.

During the last decade, several attempts were made to
investigate undisturbed microhabitats charcterized by high
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Abbildung 3: Verteilung der organischen Substanz und mikrobieller
Eigenschaften auf die Korngroflenfrakrionen eines seit 7
Jahren minimal bearbeiteten (Frissaar), feinsandig-lehmi-
gen Tschernosems

Figure 3:

turnover of organic material. These microhabitats may be a
relatively small subset of total soil volume (COLEMAN and
CROSSLEY, 1996). For example, the rhizo-, drilo-, und detri-
tusphere are important microhabitats presenting “hot
spots” of microbial activity (BEARE et al., 1995). In many
cases, complex experimental designs and/or samples strate-
gies were necessary to obtain microscale soil samples for
chemical and microbiological analyses. TARAFDAR and
JunGk (1987), TARFDAR and MARSCHNER (1994) and
GAHOONIA and NIELSEN (1991) used 0.1 — 0.2 mm slices
of soil cores that were separated from the root mat by a
53 pm nylon mesh to investigate the nutrient uptake of
plant and microbial processes in the rhizosphere. The abun-
dance of rhizosphere microorganisms and their activities
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decreased within the range of several millimeters to levels
found in the bulk soil. The expansion of the rhizosphere
depended on the excretion of easily degradable organic sub-
stances by roots, mass flow and the diffusion of dissolved
organic substances used as substrates by soil microorga-
nisms. In addition, micro-scale slices (0.2 mm) gained by a
freezing microtome were used to characterize gradients of
dissolved organic matter and soil microbial processes at the
soil-litter interface (KANDELER et al., 1999b). The scale of
the soil-litter interface ranged from 1.1 — 1.3 mm, in which
the gradients of protease, xylanase and invertase activities
followed an exponential function (y=c + exp (b, + byx; +
b,x,)). The authors explained their results by the high local
release of substrates driving C and N turnover within the
1-2 mm from the surface of the litter. The investigations on
the drilosphere involved larger scales than those on the
rhizo- and detritusphere. For example, TIUNOV and SCHEU
(1999) showed that organic carbon and toal nitrogen
increased in burrow walls of Lumbricus terrestris L. by fac-
tors of 1.8-3.5 and 1.3-2.2 at distances of 0-4 mm and 8-
12 mm from earthworm burrows. The high specific respi-
ration (qO,) and the fast growth response to nutrient addi-
tions indicated that the microbial community in the bur-
row walls contained a larger fraction of metabolically active
microorganisms, adapted to continuous resource additions
by earthworm faeces and mucus. The authors concluded
that these burrows are stable microhabitats which sustain a
large and active microbial community. Therefore, the activity
of soil microorganisms probably plays an important role.

In conclusion, micro-scale investigations over the past
few years have improved our understanding of mechanisms
driving C- and N-turnover. Since the areas of high activity
in soil are heterogenciously distributed within the soil
matrix, hot spots of activity may be <10% of the total soil
volume, but may represent >90% of the total biological
activity in most soils worldwide (BEARE et al., 1995). Until
now, the up-scaling of data from the micro- to the plot- or
regional scale remains difficult because spatial distribution
patterns at these scales are still incompletely known.

4. Plot-scale investigations

During the last decades, investigations at the plot scale were
the dominant sampling strategy for soil chemical and bio-
logical studies. Accordingly, a representative number of soil
samples were taken from the study site (arable land, grass-
land, forest) and combined to a butk sample or treated as sep-
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arate samples. Usually, random samples were combined from et soils were taken from specific soil horizons (e.g. litter hori-
homogeneous, representative areas that were described by  zon, A horizon). Many plot-scale investigations elucidated
uniform soil type, soil texrure and habitat characteristics ~organic matter turnover, the content of microbial biomass
(OHLINGER et al., 1993; OHLINGER, 1994, 1996). Whereas  and microbial processes of different vegetation types and soil
samples of agricultural soils were mainly taken from specific ~ types. Table 1 summarizes acitivities of enzymes involved in
soil depths (e.g. 0-20 cm or 0~30 cm layers), samples of for-  carbon-, nitrogen-, phosphorous- and sulphur-cycling,

Table 1:  The response of dehydrogenase and enzyme acrivicies involved in carbon-, nitrogen-, phosphorus- and sulphur-cycling to the type of vege-
tation and soil {n.d. not determined) )
Tabelle 1: Einflul des Vegerations- und des Bodentyps auf die Dehydrogenaseakeiviic und Enzymaktiviciten des Kohlenstoff-, Stickstoff-, Phosphor-

und Schwefelkreislaufes

soil enzyme aceivity range of activities vegeration / soil type reference
sylanase activicy 13--24 spruce forest / n.d. VON MERs! et al. (1992)
mg glucose g 24 b! 0.28-8.0 beech forest / n.d. ZECHMEISTER et al. (1991)
3-17 agricultural land / n.d. TABATABAL, BREMNER (1969)
1.8-3.0 gtassland / Orthic Luvisol KANDELER, EDER (1993)
0.68 -1.02 agriculrural land / Eucric Cambisol KANDELER, MURER (1993)
0.75-2.00 agricultural land / Haplic Chernozem KANDELER et al. (1999¢)
038-1.15 crop rotation /Phaeocem, Lithosol,Cambisol KANDELER et al. (1996)
0.24-1.83 agricultural land / Haplic Luvisol, Entsol STEMMER et al. (1999)
8 glucosidase 20 -55 grasstand / Pachic Arguistoll Aywa et al. (1999)
pg p-nitrophenol g! bt 62-98 agricultural land / Argixeroll BURKET, DIck (1998)
36— 160 forest / Haplohumult BURKET, Dick (1998)
70-130 crop rotation / Fluvisol Curcl et al. (1997}
130-310 crop rotation / Hapludalf DENG, TABATABAI (1996)
7186 crop rotation / Pachic Ultic Argixerolls MILLER, DIck (1995b)
protease activity 150 - 520 agriculcural land / Haplic Chernozem KANDELER et al. (1999c¢)
pg tyrosine g™t 2 b+ 224-514 pasture / Typic Dystrochrept HAYNES, WILLIAMS (1999)
315 -468 crop rotation / Phaeocem, Lithosol,Cambisol KANDELER et al. (1996)
120 - 430 wheat seeds / loamy sand BADALUCCO et al. (1996)
198 - 288 crop rotation / Haplic Luvisol FRIEDEL et al. (1996)
304 - 624 agricultural Jand / Eurric Cambisol KANDELER, MURER (1993)
arginine deaminase activity 2.5-5.0 grassland / Pachic Arguistoll Ajwa etal. (1999)
pgNglhl 1.7-2.0 crop rotation/Phaeocem,Lithosol, Cambisol KANDELER et al. (1996)
40-11.0 forest / sandy soils Dirry, MUNCH (1995)
0.1-13 crop rotation / Fluvenitic Ustochrepe FRANZLUEBBERS et al. (1995)
arylsulfatase acrivity 30 - 50 grassland / Pachic Arguistoll Aywia eral. (1999)
pg p-nitrophenol gt h-! 115~ 340 agriculrural land / Hapludoll KLosE et al. (1999)
6.9-213 pasture / Typic Dystrochrept HavNES, WiLLIAMS (1999)
2149 forest / Podzol STADDON er al. (1998)
1460 —-5912 forest / various soil types GARCIA, HERNANDEZ (1997)
50 - 350 crop roration / Hapludalf DENG, TABATABAI (1997)
28-58 crop rotation/Phaeocem, Lithosol,Cambisol KANDELER et al. (1996)
alkaline phosphatase 4080 grassland / Pachic Arguistoll AJwa et al. (1999)
pg p-nitrophenol g h'! 40-790 agricultural land / Aeric Vertic Epiaqualfs KM et al. (1998)
100 — 500 crop rotation / Hapludalf DENG, TABATABAI (1997)
181 - 225 crop rotation / Ustochrept CHANDER et al. (1997)
dehydrogenase 114155 crop rotation / Haplumbreps, Hapludalfs BEYER et al. (1999)
pg TPF gl 24 Kt 2-9 n.m. / Palexeralf MARZADONI et al. (1996)
‘ 0.6-0.9 crop rotation / Fluvisol CURCI er al. (1997)
68-97 crop rotation / Ustochrepe CHANDER et al. (1997)
148 - 207 crop rotation / Fluventic Xerochrept PERUCCI et al. (1997)
59-153 crop rotation /Phaeocem, Lichosel,Cambisol KANDELER et al. (1996)
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The plot-scale investigations of agricultural soils were
mainly performed to understand the influence of soil mana-
gement on soil organic martter turnover; the parameter
included changes in the quantity and quality of plant
residues entering the soil, their seasonal and spatial distribu-
tion, the ratio between above- and below-ground inputs,
and changes in nutrient inputs (CHRISTENSEN, 1996).
Using random samples of homogeneous, representative
fields, most researchers have focused more on temporal vari-
ability than on the spatial heterogenity of different soil prop-
erties. Therefore, intensive studies of organic matter changes
on different time scales (from one vegetation period to ca.
one hundred years) were used to predict future changes and
to improve soil protection. Since changes in SOM content
are undetectable within 1 or 2 decades in temperate regions,
datasets of long-term experiment are used to evaluate soil
organic matter models (POWLSON et al., 1996). Figure 4 pre-
sents an example from the Ultuna long-term field experi-
ment in Sweden (Uppsala). This experiment was established
in 1956 on a clay loam (Eutric Cambisol) and is based on
equal amounts of organic carbon (2000 kg Corg ha'! yrl)
applied through different organic amendments in compari-
son to reference plots. Therefore, changes in organic carbon
contents in topsoil (0-20 cm) can be directly related to the
stability of the organic matter applied. Figure 4 shows the
development of C org COTITENS OVer the last 42 years. The bare
fallow plot lost approximately one third of its initial C org
content due to mineralization of the initial soil C__. Root
and stubble input (cereals, rape and fodder beet) in the non-
nitrogen treated plot yielded slightly higher C,rg conents
compared to bare fallow. Green manure, being the least sta-
bilized organic material, kept the C__-level nearly constant;
materials less available for microbial degradation and min-
eralization, like animal manure and peat additions, increased
this level considerably. Note that changes in humus contents
are still ongoing and no equilibrium between C org inputand
mineralization has been observed in the Ultuna experiment
until now. Changes in microbial biomass and microbial
processes are manifested over a shorter time scale (CHRis-
TENSEN, 1996). The recognition that soil microbial proper-
ties vary seasonally and that long-term variability exsists has
improved our understanding of soil dynamics (DALAL et al.,
1991; FRIEDEL et al., 1996; SALINAS-GARCIA et al., 1997).
Therefore, in many cases these investigations helped to pre-
dict the expected changes in soil and their speed. For exam-
ple, the response of xylanase activities in the top soil of a
chernozem to reduced tillage intensity was detectable with-
in the first year of the experiment, whereas significant treat-
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Figure 4: Development of organic carbon contents in topsoil sam-
ples (0-20cm) of the Ultuna long-term field experiment
since its starc in 1956. Fallow = bare fallow, No-N = plocs
withour nitrogen ferrilization; (redrawn from GERZABEK
et al,, 1997, amended with data from 1998)
Abbildung 4: Entwicklung der Gehalte an organischem Kohlenstoff im

Oberboden (0-20 cm) des Ultuna Langzeicfeldversuches
seit dessen Anlage im Jahr 1956. Fallow = Dauerschwarz-
brache, No-N = Fruchtfolge ohne Stickstoffdiingung,
Green Manure = Grasschnitt; Animal Manure = Stallmisc;
Peat = Torf; (umgezeichner aus GERZABEK et al., 1997,
ergiinzt um Daten des Jahres 1998)

ment effects on microbial biomass and N-mineralization
were observed after a 4-year period (KANDELER et al.,
1999¢). The authors explained the slow response of sub-
strate-induced respiration to the altered tillage based on dif-
ferences in biomass C turnover rates. Moreover, many plot-
scale investigations showed that organic amendments
(plant material, animal residues, sewage sludge) to soil are
rapidly decomposed by microbial transformation, releasing
essential nutrients such as N, B, and S. Stimulation of
microbial biomass and enzyme activities in soil is usually
greater in organically versus inorganically fertilized soils
(GIANFREDA and BOLLAG, 1996). In addition, crop rota-
tions which maintain plant root activity most of the year
and have biennial legume-green manure incorporations,
can improve soil chemical and microbiological properties
within a relatively short time of 2 years (MILLER and DICK,
1995a, b).

In conclusion, many plot-scale investigations of chemical
and microbiological properties from the range of different
soil ecosystems provide us with a useful database to explain
potential changes within a single field or plot due to soil
management and various other anthropogenic actions; at
the same time, they also provide valuable data to model
processes on the regional scale.
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5. Regional-scale investigations

Basic information on spatial distribution patterns and spa-
tial continuity of soil microbial populations and biochemi-
cal processes is necessary to describe soil microbiological
properties at a regional scale (WIRTH, 1999). However, con-
cepts and research activities at these scales are still sparse
(PENNOCK et al., 1992; BERGSTROM et al., 1998; STORK and
DiLLy, 1998; WirTH, 1999). To date, most reports have
focused on soil quality and fertility (SMITH et al., 1993;
CAHN et al., 1994) and only rarely on landscape-scale spa-
dal distribution of soil biochemical processes (PENNOCK et
al., 1992; HALVORSON et al., 1995; BERGSTROM et al,
1998). The distribution patterns of soil microbial proper-
ties on this scale can be traced back to several physical,
chemical and biological dependencies. The characterization
of these interactions is essential to achieve a better under-
standing of complex ecosystem processes (GOOVAERTS,
1998). For example, TSCHERKO (1999) reveal site factors
(land use, soil type, contamination) that correlate with soil
microbial properties and she identifies those microbial vari-
ables most sensitive to these factors. In order to determine
the importance of factors which influence microbial bio-
mass, N-mineralization and enzyme activities (xylanase,
urease, phosphatase, arylsulfatase) on a more regional scale,
2500 values of microbial properties across different ecosys-
tems derived from previous studies in Central Europe were
pooled and analyzed for undetlying trends by conventional

statistical procedures combined with fuzzy operations
(TSCHERKO, 1999). The data entities were collected from
10 different soil types over the last 10 years. The evaluation
of the data (two-factorial ANOVA including organic car-
bon as a covariate) revealed a significant influence of land
use (forest, grassland, arable land) and soil type on micro-
bial properties (Table 2). Additionally, total organic carbon
explained half of the variability of the enzyme activities
(phosphatase, B-glucosidase, dehydrogenase, urease, xyla-
nase) and one third of the heterogeneity of the microbial
biomass (microbial C and N). In a multivariate, hierarchi-
cal view (cluster analysis with fuzzy numbers including all
microbial variables), land use was the strongest factor, con-
tamination the weakest factor governing the size of soil
microbial properties at the ecosystem level. Soil type turned
out to be an important site factor as it summarizes climat-
ic, topographical and geological conditions, acidification,
and vegetation influence (TSCHERKO, 1999). A multivari-
ate approach of fuzzy set operations revealed microbial bio-
mass and arylsulfatase activity to be sensitive indicators for
contamination across different ecosystems.

In addition, a basis for further studies on the relationships
between biochemical soil parameters and site properties can
be obtained from the Soil Information System BORIS,
which has been developed by the Federal Environment
Agency in Vienna (SCHICHO-SCHREIER, 1994; SCHWARZ et
al., 1994 bzw. 1999). BORIS holds more than 1.25 million
records from more than 8500 sites from all Austrian provin-

Table 2: Influence of soil cype and land use on soil microbial processes. Given are the F-values of the factor variables (soil type, land use) and of the
co-variate (total organic carbon TOC), level of significance (*** P<0.001, ** P<0.01, * P<0.05, ns no significant), toral degrees of free-

dom (df) and explained variance (R?) of two-factorial ANOVA

Tabelle 2: Einfluf von Bodentyp und Landnutzung auf bodenmikrobiologische Prozesse. F-Werte der Variablen (Bodentyp, Landnutzung) und der
Co-Variate (Gesamigehale des organischen Kohlenstoffs), Niveau der Signifikanz (*** P<0.001, ** P<0.01, * P<0.05, ns nicht signifikant),
Freiheirsgrade (df) und erklirte Varianz (R?) der zwei-faktoriellen ANOVA

Microbial Co-variate FACTOR

biomass/activity TOC Land use Soil type Interaction df R2
Biomass N 84.9%** 5.2%* % a) 7 0.67
SIRD) 1712.4%** 574.0%* 95.2% 55.2%* 9 0.74
Alkal, Phosphatase 1872.5%%* 618.2%** 164.5** 134.3*** 7 0.76
Arylsulfatase 50.7%* 15,2%%* 57.4** a) 6 0.47
B-Glucosidase 1007.0*** 2.8ns 3.2% a) 4 0.87
Phosphatase 1351.0%* 486.5%* 0.1ns a) 5 0.87
Dehydrogenase 582.1%+* 25.47%%* 63.8** 26.8%** 6 0.69
N-Mineralisation 1004.0*** 578.0%+* 72.5%* 238.2%* 11 0.70
Pot. Nicrification 208.8*** 8.9** 108.6* 19.2%%* 7 0.45
Protease 4832 4*** 138.9%* 59.9%* 13, 1% 8 0.89
Urease 4203.6** 671.9%%* 32.6™ 53.0* 11 0.83
Xylanase 2884.0%* 82.6** 47.2%* 19.8*** 11 0.75

) due to a singular matrix, higher-order interactions have been suppressed

b) SIR (Substrate-induced respiration)
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cial soil surveys (except Salzburg and Vorarlberg), the For-
est Soil Monitoring System, Austria-wide cesium data and
more than 25 additional investigations. The records com-
prise site descriptions (more than 150 parameters), soil pro-
file descriptions (more than 50 different parameters) and
analytical measurements (more than 300 different parame-
ters). All these parameters — among them more than 20 dif-
ferent biochemical soil parameters (OHLINGER, 1996) —
have been included in the “Data Key Soil Science”
(SCHWARZ et al., 1994), which forms the basis for the har-
monization of different investigations. An expansion of soil
parameters in the BORIS Soil Information System is possi-
ble at any time and will be included in the next edition of
the “Data Key Soil Science”.

Via BORIS INFO, a meta data information system (inter-
net address: http://www.ubavie.gv.at/ under Umweltsitua-
tion/Boden/BORIS) each user can obtain the information
on which parameters have been investigated and on where
and how to access them. Submitting in a query for all para-
meters dealing with soil microorganisms reveals that 405
samples from 280 sites have been investigated. The location
of these sites is shown on a map of Austria (Figure 5a). Until
now, 19218 samples from 5782 sites have been analyzed for
the organic matter content of soils (Figure 5b). Since the
analytical procedure used in the different labs was not com-
pletely uniform for all analyses, only partially comparisons
are possible. For 4074 sites it was possible to calculate the
weighted mean of topsoils (0—20 cm) according different
land use (Table 3). As expected the average organic matter
contents of forests are higher than those of grassland, which

Table 3:  The response of organic matter (%) in top soils (0 — 20 cm) to
land use. Evaluation of the Soil Informarionsystem BORIS of
the Federal Environment Agency Vienna (The data were pro-
vided by the federal provinces of Burgenland, Lower Austria,
Carinthia, Upper Austria, Styria, Tirol and the Federal Forest
Research Center.)

Organische Substanz (%) in Oberbdden (0 — 20 cm) unter-
schiedlicher Landnuczung. Auswertung aus dem Bodeninfor-
mationssystem BORIS des Umweltbundesamtes Wien (Die
Daten wurden von den Amtern der Landesregierungen von
Burgenland, Niederdsterreich, Kirnten, Obersterreich, Steier-
mark, Tirol und der Forstlichen Bundesversuchsanstalt aus den
jeweiligen Bodenzustandsinventuren zur Verfiigung gestellt.)

Table 3:

Others

5.17
2.70

Arable Land

2.81
2.40
0.40 0.80
40.20 70.95
2068 46

Grassland

6.88
5.17
1.35
55.90
1168

Forest

10.90
8.06

Mean
Median
Min 1.21
Max 61.20
n 792
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are higher than those of arable land. The spatial distribution
is shown in Figure 6. In eastern Austria with its higher per-
centage of arable land, the values are lower than in the wes-
tern provinces, where there is more grassland and forest.

Few studies examined in detail the relationships between
soil physico-chemical properties and microbial indices at a
larger scale. At the landscape scale significant correlations
have been found between organic carbon and microbial
biomass (WARDLE, 1992; STORK and DiLLy, 1998), and
enzyme activities (DUTZLER, 1977a, b; BERGSTROM et al.,
1998; WIRTH, 1999). Based on this knowledge, models can
be fitted to estimate and upscale soil microbial activity va-
lues at unsampled locations. Geostatistical models (WAR-
RICK et al., 1986; GOOVAERTS, 1998) have been a tool to
estimate spatial dependencies and to predict soil attribute
values. Spatial dependencies of soil microbial biomass at the
landscape scale ranged from 13 m (STORK and D1LLY, 1998)
to 28 m (WIRTH, 1999), the spatial dependency of soil basal
respiration from 10 m (STORK and DiLLY, 1998) to 61.2 m
(WIRTH, 1999). BERGSTROM et al. (1998) determined spa-
tial dependencies of phosphatase and arylsulfatase at ranges
of 19 m and 16 m, respectively, and no spatial dependency
of dehydrogenase, urease, glutaminase, and B-glucosidase.

Knowledge of the spatial dependency of soil microbial
attributes helps to interpret their ecological meaning at the
ecosystem level (BERGSTROM et al., 1998). Similarity of
ranges between soil physico-chemical and microbial attri-
butes points to ecological identity. Unfortunately, bio-
chemical processes in the soil are dynamic, leading to vari-
ation in both space and time. Landscape-scale analyses by
geostatistical methods are a useful tool for identifying and
explaining spatial relationships between soil biochemical
processes and site properties. However, further model
improvements should focus on identifying and mapping
time-space patterns using modern approaches like fuzzy
classification and geostatistical interpolation.
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Abfrageergebnis aus dem 8sterreichweiten Bodeninformationssystem BORIS: Darstellung der Standorte, an denen biologisch-chemische

Abbildung 5a:

Paramerer untersucht wurden

Result of query 1o the Austria-wide Soil Information System BORIS: Representation of sites at which organic marter has been inve-

Figure 5b:
stigated

Abbildung 5b:  Abfrageergebnis aus dem ssterreichweiten Bodeninformationssystem BORIS: Darstellung der Standorte, an denen organische Sub-
stanz untersucht wurde
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Figure 6:

Distribution of organic matter in topsoils (0~20 ¢cm) according to land use

Abbildung 6: Verteilung der organischen Substanz in Oberbéiden (0 20 cm) nach Landnutzung
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